Extracellular-regulated protein kinase cascades are activated in response to injury in human skeletal muscle.

نویسندگان

  • Doron Aronson
  • Jørgen F P Wojtaszewski
  • Anders Thorell
  • Jonas Nygren
  • David Zangen
  • Erik A Richter
  • Olle Ljungqvist
  • Roger A Fielding
  • Laurie J Goodyear
چکیده

The mitogen-activated protein (MAP) kinase signaling pathways are believed to act as critical signal transducers between stress stimuli and transcriptional responses in mammalian cells. However, it is not known whether these signaling cascades also participate in the response to injury in human tissues. To determine whether injury to the vastus lateralis muscle activates MAP kinase signaling in human subjects, two needle biopsies or open muscle biopsies were taken from the same incision site 30-60 min apart. The muscle biopsy procedures resulted in striking increases in dual phosphorylation of the extracellular-regulated kinases (ERK1 and ERK2) and in activity of the downstream substrate, the p90 ribosomal S6 kinase. Raf-1 kinase and MAP kinase kinase, upstream activators of ERK, were also markedly stimulated in all subjects. In addition, c-Jun NH2-terminal kinase and p38 kinase, components of two parallel MAP kinase pathways, were activated following muscle injury. The stimulation of the three MAP kinase cascades was present only in the immediate vicinity of the injury, a finding consistent with a local rather than systemic activation of these signaling cascades in response to injury. These data demonstrate that muscle injury induces the stimulation of the three MAP kinase cascades in human skeletal muscle, suggesting a physiological relevance of these protein kinases in the immediate response to tissue injury and possibly in the initiation of wound healing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exercise-induced mitogen-activated protein kinase signalling in skeletal muscle.

Exercise training improves glucose homeostasis through enhanced insulin sensitivity in skeletal muscle. Muscle contraction through physical exercise is a physiological stimulus that elicits multiple biochemical and biophysical responses and therefore requires an appropriate control network. Mitogen-activated protein kinase (MAPK) signalling pathways constitute a network of phosphorylation casca...

متن کامل

Role of Map4k4 in Skeletal Muscle Differentiation: A Dissertation

Skeletal muscle is a complicated and heterogeneous striated muscle tissue that serves critical mechanical and metabolic functions in the organism. The process of generating skeletal muscle, myogenesis, is elaborately coordinated by members of the protein kinase family, which transmit diverse signals initiated by extracellular stimuli to myogenic transcriptional hierarchy in muscle cells. Mitoge...

متن کامل

Evidence against high glucose as a mediator of ERK1/2 or p38 MAPK phosphorylation in rat skeletal muscle.

Hyperglycemia leads to multiple changes in insulin signaling in skeletal muscle from people with type 2 diabetes. We hypothesized that mitogen-activated protein kinase (MAPK) signaling cascades may be directly activated by an acute exposure to high extracellular glucose concentrations. We determined whether an elevation in the extracellular glucose concentration would induce signal transduction...

متن کامل

Key signalling factors and pathways in the molecular determination of skeletal muscle phenotype.

The molecular basis and control of the biochemical and biophysical properties of skeletal muscle, regarded as muscle phenotype, are examined in terms of fibre number, fibre size and fibre types. A host of external factors or stimuli, such as ligand binding and contractile activity, are transduced in muscle into signalling pathways that lead to protein modifications and changes in gene expressio...

متن کامل

Loss of the 7 Integrin Promotes Extracellular Signal-Regulated Kinase Activation and Altered Vascular Remodeling

Vascular smooth muscle cell (VSMC) proliferation and migration are underlying factors in the development and progression of cardiovascular disease. Studies have shown that altered expression of vascular integrins and extracellular matrix proteins may contribute to the vascular remodeling observed after arterial injury and during disease. We have recently shown that loss of the 7 1 integrin resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 275 2  شماره 

صفحات  -

تاریخ انتشار 1998